
© 2024 

A Guide to a Modern 
Project Setup

PyConDE / PyData 2024, April 22nd 

Florian Wilhelm

Streamlining 
Python 
Development 

 



Mathematical Modelling

Modern Data Warehousing & Analytics 

Personalisation & RecSys

Uncertainty Quantification & Causality

Python Data Stack

OSS Contributor & Creator of PyScaffold

Dr. Florian Wilhelm
 • HEAD OF DATA SCIENCE 

FlorianWilhelm.info

florian.wilhelm@inovex.de

FlorianWilhelm



‣ Application Development (Web Platforms, Mobile 
Apps, Smart Devices and Robotics, UI/UX 
design,Backend Services) 

‣ Data Management and Analytics (Business 
Intelligence, Big Data, Searches, Data Science 
and Deep Learning, Machine Perception and 
Artificial Intelligence) 

‣ Scalable IT-Infrastructures (IT Engineering, Cloud 
Services, DevOps, Replatforming, Security)

‣ Training and Coaching (inovex Academy)

is an innovation and quality-driven 
IT project house with a focus on 
digital transformation. 

Using technology to 
inspire our clients.
And ourselves.

Berlin · Karlsruhe · Pforzheim · Stuttgart · München · Köln · Hamburg · Erlangen

www.inovex.de



1. Introduction:
a. What makes a good project setup?
b. How do we achieve it?

2. Streamlined Project Setup:
a. configuration with pyproject.toml
b. tooling with hatch, ruff, mypy, pytest, …

3. Conclusion

Agenda



Introduction



1. efficient development

2. easy collaboration

3. seamless build & deployment

What makes a streamlined Python Project Setup?



1. Conventions
a. project structure
b. code formatting, e.g., pep8, black, ruff
c. documentation, e.g., Sphinx, mkdocs

2. Automation
a. dependency & environment management
b. building & publishing
c. versioning, e.g., semantic versioning
d. testing, linting/formatting, type checking

3. Easy to Use!

Concrete Requirements for those Goals



Semantic Versioning

‣ tells developers what to 
expect

‣ avoids dependency hell for 
developers using your 
software

‣ necessary for requirement 
specifiers like ~= 2.21 or 
^2.2.21 (Poetry only)

More Details: https://www.geeksforgeeks.org/introduction-semantic-versioning/ and https://semver.org/ 

https://www.geeksforgeeks.org/introduction-semantic-versioning/
https://semver.org/


This is not a talk about the best Package Management Tool

Source: An unbiased evaluation of environment management and packaging tools (https://www.inovex.de/de/blog/)

https://www.inovex.de/de/blog/an-unbiased-evaluation-of-environment-management-and-packaging-tools-in-python/


Streamlined Project Setup



‣ reproducibly building & publishing packages

‣ robust environment management with support for 

custom scripts

‣ easy Python management, replacing pyenv

‣ easy semantic versioning based on Git tags

‣ sophisticated testing within various environments, 

replacing tox

🐣 Hatch, the extensible Python project manager

Ofek Lev



‣ folders for
∙ source files
∙ documentation
∙ tests

‣ human-readable information
∙ README.md
∙ … 

‣ configuration files
∙ pyproject.toml
∙ … 

Project Directory Structure



‣ defines the build system
‣ metadata about your project 

for PyPI
‣ configuration for (almost) all 

tools
∙ pytest
∙ mypy
∙ ruff
∙ coverage

All-in-One Configuration with pyproject.toml



Scripts in pyproject.toml for automation of tasks, e.g.
∙ running unit-tests with our without coverage, debugging,
∙ building the documentation,
∙ running the linters, code checks, mypy,
∙ …

Automation with Scripts!

> hatch run test:cov



‣ replaces tons of tools
‣ easy configuration via 

pyproject.toml
‣ extremely fast
‣ over 700 plugins

Code Quality: Linting & Formatting

Ruff
flake8

autoflake

pydocstyle

…



Why mypy?
Type Checking: Are you my type?

compile-time type checking finds many errors in 
advance, often edge cases.

type declaration act as machine-checked 
documentation, thus enhancing the dev 
experience.



Mypy Example

> hatch run lint:typing



pytest 
‣ defacto standard for unit testing
‣ powerful features like fixtures, etc.
‣ tons of useful plugins, e.g.:

∙ pytest-cov for coverage
∙ pytest-recording for mocking calls to external services
∙ pytest-sugar to make it easier on the eyes

Testing with pytest & hatch

hatch & tox
‣ isolated environments for testing different Python versions and 

dependency combinations



Avoiding human-errors by automated checks on every git commit

Automated QA with pre-commit



‣ Automatic and reproducible testing
‣ Publishing packages based on git tags
‣ Established branching strategy, e.g. GithubFlow 

for efficient collaboration
‣ Scalability and Adaptability when needed
‣ Automated deployments, building of 

documentation etc.

Automation with CI/CD

More Details: Data Science in Production: Packaging, Versioning and Continuous Integration (https://www.inovex.de/de/blog/)

https://www.inovex.de/de/blog/data-science-in-production/


Conclusion

‣ unified configuration in pyproject.toml 
‣ standardized folder structure with 

src-layout and useful README.md
‣ easy package management and 

automation with hatch
‣ automated QA with ruff, pytest, 

pre-commit, mypy, CI/CD
‣ proper documentation with mkdocs
‣ automation & conventions are key!



https://github.com/FlorianWilhelm/the-hatchlor

Check out the Hatchlor!

⭐

https://github.com/FlorianWilhelm/the-hatchlor


made by 

CHEERS TO THE COMMUNITY

Credits & Resources

‣ Ofek Lev, the creator of hatch, for is 
awesome work in his spare time ❤

‣ Michael Hofmann from inovex who 
made these awesome slides

https://ofek.dev/
https://www.inovex.de/de/blog/author/mhofmann/


© 2023

Thank you!

Dr. Florian Wilhelm

Head of Data Science

PyConDE / PyData 2024

inovex.de

florian.wilhelm@inovex.de

@inovexlife

@inovexgmbh


