
© 2025

PyConDE / PyData 2025, April 23rd

Florian Wilhelm

Why Exceptions Are
Just Sophisticated
GoTos
… and How to Move
Beyond

Mathematical Modelling

Modern Data Warehousing & Analytics

Personalisation & RecSys

Uncertainty Quantification & Causality

Python Data Stack

OSS Contributor & Creator of PyScaffold

Dr. Florian Wilhelm
 • HEAD OF DATA SCIENCE

FlorianWilhelm.info

florian.wilhelm@inovex.de

FlorianWilhelm

1. History of GoTo
2. Why Exceptions Exist and

What They Are
3. The Evolution Toward Result Types
4. Using Result Types in Python
5. Conclusion

Agenda

History of GoTo

GoTo in Fortran & C
History of GoTo

GoTo is a jump to a label, i.e. one-way transfer of control to
another line of code.

● Fortran introduced GoTo and
If statements in 1957

● Applications of GoTo:
○ to skip code
○ to loop over code
○ to break out of loops
○ for error handling

FORmula TRANslation or just FORTRAN

The History, Controversy, and Evolution of the Goto Statement by Andru Luvisi, 2008

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7f8b4f6cfca305d80915f9f2d69e00955870f325

Spaghetti Code (1977)
History of GoTo

Macaroni is Better
than Spaghetti!
- Guy Lewis Steele, Jr.

 https://dl.acm.org/doi/10.1145/800228.806933

https://dl.acm.org/doi/10.1145/800228.806933

Downsides of Goto
History of GoTo

● Hard to understand
● Hard to follow the control flow (Spaghetti code)
● Extremely hard to debug

Structured Programming (~1960 with Algol60)
History of GoTo

Structured programming to
● improve the clarity, quality, and development time of a computer

program
● by using structured control flow like if/then/else, while/for-loop, block

structures, e.g. begin/end, {} (or indentation), and subroutines.

https://en.wikipedia.org/wiki/Structured_programming
go to statement considered harmful by Dijkstra, 1968

go to statement considered harmful! – Dijkstra (1968)

Structured program theorem - Böhm–Jacopini (1966)

https://en.wikipedia.org/wiki/Structured_programming
https://dl.acm.org/doi/10.1145/362929.362947

All non-trivial abstractions are leaky!
History of GoTo

Knuth demonstrated that in certain
cases, eliminating goto statements
without introducing multi-level breaks
or similar constructs can lead to less
efficient or more complex code.

Structured Programming with go to Statements by Donald E. Knuth, 1974

https://pic.plover.com/knuth-GOTO.pdf

Layer Cake
History of GoTo

GoTo is what the CPU does.
We abstract it to think better!

PEP 3136 – Labeled break and continue for Python 3.1 (2007)
History of GoTo

https://peps.python.org/pep-3136/

https://peps.python.org/pep-3136/

How about Python?
History of GoTo

https://stackoverflow.com/questions/653509/breaking-out-of-nested-loops

With a state

https://stackoverflow.com/questions/653509/breaking-out-of-nested-loops

How about Python?
History of GoTo

https://stackoverflow.com/questions/653509/breaking-out-of-nested-loops

With else: of
for-loop

https://stackoverflow.com/questions/653509/breaking-out-of-nested-loops

How about Python?
History of GoTo

https://stackoverflow.com/questions/653509/breaking-out-of-nested-loops

With exceptions 😈

https://stackoverflow.com/questions/653509/breaking-out-of-nested-loops

How about Python?
History of GoTo

https://stackoverflow.com/questions/653509/breaking-out-of-nested-loops

Use functions! 🤩

https://stackoverflow.com/questions/653509/breaking-out-of-nested-loops

Why Exceptions Exist
and What They Are

Exceptions in Python
Why Exceptions Exist and What They Are

An exception is an event that breaks normal program flow, typically
representing an error or special case requiring explicit handling.

read_data

process_data

display_results

Climbing the Stack
Why Exceptions Exist and What They Are

<module>

Stack

ValueError

Handler

History of Exceptions
Why Exceptions Exist and What They Are

Support of exceptions is quite
common in programming languages
from the 80s on.

Why?
● Separate normal logic from error

handling
● Make error propagation automatic

Problems with Exceptions
Why Exceptions Exist and What They Are

1. Invisible control flow
2. Error-handling surprises, e.g. in dependencies
3. Debugging complexity
4. Concurrency & parallelism
5. Performance & resource allocation, e.g. exceptions in C++ are

discouraged.

Goto jumps to some other line, exception goes up the stack.

https://belaycpp.com/2021/06/16/exceptions-are-just-fancy-gotos/

https://belaycpp.com/2021/06/16/exceptions-are-just-fancy-gotos/

The Evolution Toward Result Types

Result Types

Return the actual value or error state wrapped in a
container type and enforce handling the error state when
opening the container.

● The concept of wrapping values and modeling
alternatives is part of Algebraic Data Types
(ADTs).

● If ADTs adhere to certain mathematical laws
by implementing the monad interface, they
are called monads.

● This concept is an important aspect in
functional programming.

The Evolution Toward Result Types

Golang (2009)
The Evolution Toward Result Types

Rust (2015)
The Evolution Toward Result Types

Haskell (1990)
The Evolution Toward Result Types

What do we get from Result Types?
Using Result Types in Python

● No hidden control flow
● Explicitness: force the

caller to handle
success/failure

● Easier to reason and
test code

Before After

Using Result Types in Python

How to use result types in Python?
Using Result Types in Python

Libraries offering result type containers like Maybe, Result, IO, Future, etc.

Library Comment Maintained
returns Haskell / FP inspired & full-featured, pythonic ✅
result simple and rust-like ❌
oslash Haskell-inspired ❌
expression F# / OCaml-inspired, simplistic ✅

https://github.com/dry-python/returns
https://github.com/rustedpy/result
https://github.com/dbrattli/oslash
https://expression.readthedocs.io/

Success and Failure
Using Result Types in Python

Make functions safe by wrapping all exceptions into return types
Using Result Types in Python

Working with the wrapped values of a result type
Using Result Types in Python

Analogue to Haskell, we match Success and Failure to unwrap the
value or error.

Railway oriented programming
Using Result Types in Python

So we have Result Types now, how to replace exceptions now?

Railway oriented Programming!

Explicitly handling the success and failure path
and by simply composing basic building blocks

https://fsharpforfunandprofit.com/rop/ by Scott Wlaschin

https://fsharpforfunandprofit.com/rop/

Compose basic building blocks like a five year old!
Using Result Types in Python

possible failure
occurs

apply operation to
success value, that
may lead to an
failure

apply operation
to failure, that
may recover
from the failure

+ +

map() & alt() for applying pure functions to success and failure
Using Result Types in Python

map alt

bind() & lash() for applying non-pure functions to success and failure
Using Result Types in Python

bind lash

Composition with pipe(...)
Using Result Types in Python

What else can be done with returns?
Using Result Types in Python

● Containers for IO, Futures (async calls), etc.
● Managed for dealing with resources (functional counterpart of

context manager)
● Many more compositions besides pipe to deal with result types
● Dealing with variadic, i.e. non-unary, functions with helpers like

(un-)curry, partial, do-notation, etc.
● Trampolines for Tail Call Optimization
● and more….

Conclusion

● Also consider the failure path! Not just
the happy path of your program.

● How Algebraic Data Types, like Result,
work conceptually

● Railway-oriented programming as a
concept that replaces traditional
exception handling.

● Advanced (4th-generation) languages
like Rust & Haskell enforce the usage of
result types

So should you apply this now
in your next Python project?

● Python is not inherently functional,
and over-applying functional
paradigms can make code less
readable and idiomatic.

● returns might be the right tool for
certain use-cases if your team is and
thinks functional

Conclusion

© 2023

Thank you!

Dr. Florian Wilhelm

Head of Data Science & Mathematical Modelling

PyConDE & PyData 2025

inovex.de

florian.wilhelm@inovex.de

@inovexlife

@inovexgmbh

